Accuracy of existing atomic potentials for the CdTe semiconductor compound.
نویسندگان
چکیده
CdTe and CdTe-based Cd(1-x)Zn(x)Te (CZT) alloys are important semiconductor compounds that are used in a variety of technologies including solar cells, radiation detectors, and medical imaging devices. Performance of such systems, however, is limited due to the propensity of nano- and micro-scale defects that form during crystal growth and manufacturing processes. Molecular dynamics simulations offer an effective approach to study the formation and interaction of atomic scale defects in these crystals, and provide insight on how to minimize their concentrations. The success of such a modeling effort relies on the accuracy and transferability of the underlying interatomic potential used in simulations. Such a potential must not only predict a correct trend of structures and energies of a variety of elemental and compound lattices, defects, and surfaces but also capture correct melting behavior and should be capable of simulating crystalline growth during vapor deposition as these processes sample a variety of local configurations. In this paper, we perform a detailed evaluation of the performance of two literature potentials for CdTe, one having the Stillinger-Weber form and the other possessing the Tersoff form. We examine simulations of structures and the corresponding energies of a variety of elemental and compound lattices, defects, and surfaces compared to those obtained from ab initio calculations and experiments. We also perform melting temperature calculations and vapor deposition simulations. Our calculations show that the Stillinger-Weber parameterization produces the correct lowest energy structure. This potential, however, is not sufficiently transferrable for defect studies. Origins of the problems of these potentials are discussed and insights leading to the development of a more transferrable potential suitable for molecular dynamics simulations of defects in CdTe crystals are provided.
منابع مشابه
امکان سنجی استفاده از ترکیب سه تایی( ZnxHg(1-x)Te به عنوان طیف نمای تابش های هسته ای
In this paper in order to achieve a suitable spectrometer for nuclear radiation detection at room temperature, effect of adding the element Hg to binary compound semiconductor ZnTe was studied completely. Electronic structure and transport properties of ternary compound semiconductor ZnxHg(1-x)Te (ZHT) simulated using ABINIT as a computational code based on density functional theory. According ...
متن کاملInvestigation of Physical Properties of e-Beam Evaporated CdTe Thin Films for Photovoltaic Application
CdTe thin films with 2.8 µm thickness were deposited by electron beam evaporation method. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and atomic force microscopy (AFM) were used to characterize the films. The results of AFM analysis revealed that the CdTe films have uniform surface. CdTe thin films were heat-treated by SnCl2 solution. Structural analysis using XRD s...
متن کاملThe Effect of Change the Thickness on CdS/CdTe Tandem Multi-Junction Solar Cells Efficiency
Researchers in the field of simulation have been mainly interested in the question of how to increase the efficiency of solar cells. Therefore this study aimed to investigate CdS/CdTe solar cells by applying AMPS-1D software. The impact of semiconductor layers thickness on the output parameters of the CdS/CdTe solar cell is being analyzed and studied carefully, for example, fill factor, effici...
متن کاملRecent Progress in CdTe and CdZnTe Detectors
Cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) have been regarded as promising semiconductor materials for hard X-ray and γray detection. The high atomic number of the materials (ZCd =48, ZTe=52) gives a high quantum efficiency in comparison with Si. The large band-gap energy (Eg ∼ 1.5 eV) allows us to operate the detector at room temperature. However, a considerable amount of cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 134 24 شماره
صفحات -
تاریخ انتشار 2011